Pages

Sabtu, 21 Mei 2011

Mekanisme Impuls Saraf

Sel-sel di dalam tubuh dapat memiliki potensial membran akibat adanya distribusi tidak merata dan perbedaan permeabilitas dari Na+, K+, dan anion besar intrasel. Potensial istirahat merupakan potensial membran konstan ketika sel yang dapat tereksitasi tidak memperlihatkan potensial cepat. Sel saraf dan otot merupakan jaringan yang dapat tereksitasi karena dapat mengubah permeabilitas membran sehingga mengalami perubahan potensial membran sementara jika tereksitasi. Ada dua macam perubahan potensial membran
:
  1. Potensial berjenjang yakni sinyal jarak dekat yang cepat menghilang. Potensial berjenjang bersifat lokal yang terjadi dalam berbagai derajat. Potensial ini dipengaruhi oleh semakin kuatnya kejadian pencetus dan semakin besarnya potensial berjenjang yang terjadi. Kejadian pencetus dapat berupa:
    1. Stimulus
    2. Interaksi ligan-reseptor permukaan sel saraf dan otot
    3. Perubahan potensial yang spontan (akibat ketidakseimbangan siklus pengeluaran pemasukan/ kebocoran-pemompaan)
Apabila potensial berjenjang secara lokal terjadi pada membran sel saraf atau otot, terdapat potensial berbeda di daerah tersebut. Arus (secara pasif )mengalir antara daerah yang terlibat dan daerah di sekitarnya (di dalam maupun di luar membran). Potensial berjenjang dapat menimbulkan potensial aksi jika potensial di daerah trigger zone di atas ambang. Sedangkan jika potensial di bawah ambang tidak akan memicu potensial aksi.
Daerah-daerah di jaringan tempat terjadinya potensial berjenjang tidak mempunyai bahan insulator sehingga terjadi kebocoran arus dari daerah aktif membran ke cairan ekstrasel (CES) sehingga potensial semakin jauh semakin berkurang. Contoh potensial berjenjang:
  1. Potensial pasca sinaps
  2. Potensial reseptor
  3. Potensial end-plate
  4. Potensial alat pacu
  1. Potensial aksi merupakan pembalikan cepat potensial membran akibat perubahan permeabilitas membran. Potensial aksi berfungsi sebagai sinyal jarak jauh.
Istilah-istilah:
  1. Polarisasi (potensial istirahat) à membran memiliki potensial dan terdapat pemisahan muatan berlawanan
  2. Depolarisasi à potensial lebih kecil daripada potensial istirahat (menuju 0 mV)
  3. Hiperpolarisasi à potensial lebih besar daripada potensial istirahat (potensial lebih negatif dan lebih banyak muatan yang dipisah dibandingkan dengan potensial istirahat)
Selama potensial aksi, depolarisasi membran ke potensial ambang menyebabkan serangkaian perubahan permeabilitas akibat perubahan konformasi saluran-saluran gerbang-voltase. Perubahan permeabilitas ini menyebabkan pembalikan potensial membran secara singkat, dengan influks Na+ (fase naik; dari -70 mV ke +30 mV) dan efluks K+ (fase turun: dari puncak ke potensial istirahat). Sebelum kembali istirahat, potensial aksi menimbulkan potensial aksi baru yang identik di dekatnya melalui aliran arus sehingga daerah tersebut mencapai ambang. Potensial aksi ini menyebar ke seluruh membran sel tanpa menyebabkan penyusutan. Cara perambatan potensial aksi:
  1. Hantaran oleh aliran arus lokal pada serat tidak bermielin à potensial aksi menyebar di sepanjang membran
  2. Hantaran saltatorik yang lebih cepat di serat bermielin à impuls melompati bagian saraf yang diselubungi mielin
Pompa Na+-K+memulihkan ion-ion yang berpindah selama perambatan potensial aksi ke lokasi semula secara bertahap untuk mempertahankan gradien konsentrasi. Bagian membran yang baru saja dilewati oleh potensial aksi tidak mungkin dirangsang kembali sampai bagian tersebut pulih dari periode refrakternya. Periode refrakter memastikan perambatan satu arah potensial aksi menjauhi tempat pengaktifan semula. Potensial aksi timbul secara maksimal sebagai respon terhadap rangsangan atau tidak sama sekali (all or none). Variasi kekuatan rangsang dlihat dari variasi frekuensi, bukan dari variasi kekuatan (besarnya) potensial aksi.
Sinaps dan Integrasi Neuron
Susunan saraf memiliki banyak neuron yang saling berhubungan membentuk jaras konduksi fungsional (functional conducting pathway). Sinaps merupakan tempat dua neuron yang berdekatan satu sama lain dan terjadi komunikasi interneuronal. Potensial aksi di neuron prasinaps menyebabkan pengeluaran neurotransmitter yang berikatan dengan reseptor di neuron pascasinaps. Sinaps berdasarkan letak:
  1. Sinaps aksodendritik
  2. Sinaps aksosomatik
  3. Sinaps aksoaksonik
Jenis sinaps:
  1. a. Sinaps Kimiawi
Permukaan yang berhadapan dengan perluasan akson terminal dan neuron disebut membran prasinaptik dan pascasinaptik yang dipisahkan oleh celah sinaptik. Membran prasinaptik dan pascasinaptik menebal dan sitoplasma meningkat densitasnya. Prasinaptik terminal banyak mengandung vesikel-vesikel prasinaptik yang berisi neurotransmiter. Vesikel-vesikel bergabung dengan membran prasinaptik dan mengeluarkan neurotransmiter ke celah sinaptik melalui melalui proses eksositosis. Mitokondria berperan dalam menyediakan ATP untuk sintesis neurotransmiter baru. Sebagian besar neuron hanya menghasilkan dan melepaskan neurotransmitter utama di semua ujung-ujung sarafnya. Misalnya, asetilkolin digunakan di susunan saraf pusat dan susunan saraf tepi, sedangkan dopamin di substansia nigra. Glisin ditemukan terutama di sinaps-sinaps medulla spinalis.
Tabel 1. Contoh Neurotransmiter Utama (Klasik) dan Neuromodulator di Sinaps
Neuromediator
Fungsi Mekanisme reseptor
Mekanisme Ionik Lokasi
Neurotransmitter utama Asetilkolin (nikotinik), L-glutamat
GABA

Neuromodulator
Asetilkolin (muskarinik), serotonin, histamin, adenosin
Eksitasi cepat Inhibisi cepat
Modulasi dan modifikasi aktivitas
Reseptor kanal ion Reseptor G-potein-coupled Membuka kanal ion (EPSP cepat) Membuka kanal ion (IPSP cepat)
Membuka atau menutup kanal K+ atau Ca2+ (EPSP dan IPSP lambat)
Sensorik utama dan sistem motorik Sistem yang mengontrol homeostasis
Tabel 2. Neurotransmitter dan Neuromodulator (yang Diketahui dan Diduga)
Neurotransmiter Klasik
Neuromodulator
Asetilkolin Dopamin
Norepinefrin
Epinefrin
Serotonin
Histamin
Glisin
Glutamat
Aspartat
Asam gama-aminobutirat  (GABA)
β-endorfin                                                              Bambosin Somatostatin                                                         Karnosin
Kolesistokinin (CCK)                                              Gastrin
Neurotensin                                                           Substansi P
Enfekalin leusin                                                      Motilin
Enfekalin metionin                                                Insulin
Angiotensin II                                                         Glukagon
Vasopresin                                                              Bradikinin
Hormon adrenokortikotropik (ACTH)                Oksitosin
α-melanocyte stimulating hormone (MSH)
Thyrotropin releasing hormone (TRH)
Gonadotropin releasing hormone (GnRH)
Polipeptida intestinal vasoaktif (VIP)
Neurotransmitter dilepaskan dari ujung saraf ketika datang impuls saraf (potensial aksi). Potensial aksi menyebabkan influks K+ yang menyebabkan vesikel sinaptik bergabung dengan membran prasinaptik. Kemudian neurotransmitter dikeluarkan ke celah sinaps. Ketika berada di celah sinaptik, neurotransmiter mencapai sasarannya dengan meningkatkan atau menurunkan potensial istirahat (resting potential) pada membrane pascasinaptik untuk waktu yang singkat. Protein reseptor pada membran sinaptik mengikat neurotransmitter dan melakukan penyesuaian dengan membuka kanal ion, membangkitkan Excitatory Postsynaptic Potential (EPSP) atau Inhibitory Postsynaptic Potential (IPSP). Eksitasi cepat diketahui menggunakan asetilkolin (nikotinik) dan L-glutamat atau inhibisi menggunakan GABA. Reseptor protein lain mengikat neuromodulator dan mengaktifkan sistem messenger kedua, biasanya melalui transduser molekuler, protein G. Reseptor ini memiliki periode laten yang lebih lama, berlangsung selama beberapa menit atau lebih. Contoh neuromodulator  adalah asetilkolin (muskarinik), serotonin, histamin, neuropeptida, dan adenosin.
Efek eksitasi atau inhibisi pada membran pascasinaps neuron bergantung pada jumlah respons pascasinaps pada sinaps yang berbeda. Jika efek keseluruhannya adalah depolarisasi, neuron akan terstimulasi dan potensial aksi akan dibangkitkan pada segmen inisial akson dan impuls saraf dihantarkan sepanjang akson. Sebaliknya, jika efek keseluruhannya adalah hiperpolarisasi, neuron diinhibisi dan tidak timbul impuls saraf.
Distribusi neurotransmitter bervariasi di berbagai bagian susunan saraf. Misalnya asetilkolin yang ditemukan di taut neuromuskular, ganglia autonom, dan ujung-ujung saraf simpatis. Pada susunan saraf pusat, kolateral neuron motorik sampai sel-sel Renshaw, hippocampus, ascending reticular pathway, serta serabut aferen sistem penglihatan dan pendengaran memiliki neurotransmitter kolinergik. Norepinefrin ditemukan pada ujung-ujung saraf simpatis dan ditemukan dalam konsentrasi tinggi di hipotalamus. Dopamin terdapat dalam konsentrasi tinggi di berbagai bagian di sistem saraf pusat, misalnya di nucleus basalis (ganglia basalis).
Efek neurotransmitter dipengaruhi oleh destruksi atau reabsorpsi neurotransmitter tersebut. Misalnya pada asetilkolin, efeknya dibatasi oleh enzim asetilkolinesterase (AChE) dengan mendegradasi asetilkolin. Namun, efek katekolamin dibatasi dengan kembalinya neurotransmitter ke ujung-ujung saraf prasinaps.
Neuromodulator merupakan zat selain neurotransmitter yang dikeluarkan dari membran prasinaps ke celah sinaps, mampu memodulasi dan memodifikasi aktivitas neuron pascasinaps. Neuromodulator dapat ditemukan bersama dengan neurotransmitter utama di sebuah sinaps tunggal. Biasanya neuromodulator terdapat di dalam vesikel prasinaps yang berbeda. Pelepasan neuromodulator ke celah sinaps tidak memberikan efek langsung pada membran pascasinaps. Neuromodulator berperan menguatkan, memperpanjang, menghambat, atau membatasi efek neurotransmitter utama di membrane pascasinaps. Neuromodulator bekerja melalui sistem messenger kedua yang biasanya melalui transducer molecular, protein G, dan mengubah respons reseptor terhadap neurotransmitter. Di daerah sistem saraf pusat tertentu, berbagai neuron aferen yang berbeda dapat melepaskan beberapa neuromodulator berlainan yang diambil oleh neuron pascasinaps. Susunan tersebut dapat menimbulkan berbagai respon berbeda tergantung pada input dari neuron aferen.
  1. b. Sinaps Elektrik
Sinaps elektrik merupakan gap junction berupa kanal dari sitoplasma neuron prasinaps ke neuron pascasinaps. Neuron-neuron berkomunikasi secara elektrik dan tidak ada transmitter kimia. Ion mengalir dari suatu neuron ke neuron lain melalui kanal-kanal penghubung. Penyebaran aktivitas yang cepat dari satu neuron ke neuron lain menunjukkan sekelompok neuron melakukan suatu fungsi bersama-sama. Sinaps elektrik dapat berjalan dua arah sedangkan sinaps kimiawi hanya satu arah. Sinaps elektrik memiliki respon yang cepat sehingga penting untuk gerakan refleks.
Reseptor Neurotransmitter
Reseptor berupa protein kompleks transmembran yang sebagian menonjol ke lingkungan ekstrasel dan bagian lain yang menonjol ke lingkungan intrasel. Reseptor neurotransmitter menangkap neurotransmitter yang dilepaskan dan menyalurkan pesan yang dibawa neurotransmitter ke intrasel. Reseptor tersebut mempunyai tempat pengikatan yang multipel (binding site).
Klasifikasi reseptor neurotransmitter:
  1. Reseptor Ionotropik (ligand-gated ion channel)
Reseptor ionotropik merupakan transmitter-gated channels. Neurotransmitter berikatan dengan reseptor yang menempel pada pintu masuk kanal ion dan menyebabkan kanal ion terbuka.  Reseptor ionotropik mempunyai aksi sangat cepat, waktu pengikatan neurotransmitter pada reseptor dan respon sangat pendek, respon singkat.
v Reseptor neurotransmitter Kolinergik
Setiap neurotransmitter menimbulkan efek di membran postsinaptik bila berikatan dengan reseptor spesifik. Dua neurotransmitter tidak akan berikatan pada satu reseptor yang sama, meskipun satu neurotransmitter dapat berikatan dengan reseptor yang berbeda. Hal ini disebut sebagai subtipe reseptor.  Asetilkolin bekerja pada dua subtipe reseptor yang berbeda. Satu tipe berada di otot skeletal (nikotinik) dan tipe lain berada di otot jantung (muskarinik).
v  Reseptor Nikotinik Asetilkolin (Ach)
Reseptor ini berperan dalam penyaluran sinyal listrik dari suatu motor neuron ke serat saraf otot. Asetilkolin yang dilepaskan oleh neuron motorik berdifusi ke membran plasma sel miosit dan terkait pada reseptor asetilkolin. Hal ini menyebabkan terjadinya perubahan konformasi reseptor dan akan menyebabkan kanal ion membuka. Pergerakan muatan positif akan mendepolarisasi membran plasma yang menyebabkan kontraksi. Pembukaan kanal hanya berlangsung sebentar meskipun asetilkolin masih menempel pada reseptor (periode desensitisasi). Reseptor nikotinik asetilkolin yang matang terdiri atas 2 α, β, γ, dan δ. Berbeda dari yang ada di otot, struktur reseptor nikotinik asetilkolin di neuron hanya terdiri atas subunit α&β 3β2).
Reseptor Muskarinik
Reseptor muskarinik yang terdapat pada otot jantung mempunyai subunit α3β2. Setelah asetilkolin berikatan dengan reseptor muskarinik, timbul sinyal dengan mekanisme berbeda. Misalnya, bila reseptor M1 atau M2 diaktifkan, reseptor ini akan mengalami perubahan konformasi dan berinteraksi dengan protein G yang selanjutnya akan mengaktifkan fosfolipase C. akibatnya terjadi hidrolisis fosfatidilinositol-(4,5)-bifosfate (PIP2) yang menyebabkan peningkatan kadar Ca2+ intrasel. Selanjutnya kation ini akan berinteraksi memacu atau menghambat enzim-enzim, menyebabkan hiperpolarisasi, sekresi, atau kontraksi. Sebaliknya, aktivasi reseptor subtype M2 pada otot jantung memacu potein G yang menghambat adenilsiklase dan mempertinggi konduksi K+ sehingga denyut jantung dan kontraksi otot jantung menurun.
Amino Acid-Gated Channels
Amino Acid-Gated Channels memediasi sebagian besar transmisi cepat sinapsis di CNS (Cerebral Nervous System). Fungsinya lebih terbatas yakni pada sistem sensorik, memori, dan penyakit.
Reseptor GABAA
Reseptor GABAA mempunyai beberapa tempat pengikatan untuk berbagai neuromodulator. Reseptor ini merupakan target yang baik untuk obat
Glutamate-Gated Channels
Reseptor agonis glutamate adalah AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), NMDA (N-methyl D-aspartate), dan Kainate. AMDA dan NMDA berperan dalam transmisi sinaps eksitator yang cepat di otak sedangkan KAINATE fungsinya belum diketahui. AMPA-gated channels permeabel terhadap Na+ dan K+ dan tidak permeabel terhadap Ca2+. Sedangkan reseptor NMDA permeabel terhadap Na+ ,K+ dan Ca2+.
  1. Reseptor Metabotropik (G protein-coupled)
Metabotropik merupakan reseptor yang berikatan dengan neurotransmitter dan membentuk second messenger sebagai salah satu jalur transduksi sinyal. Neurotransmitter yang berikatan yakni amin biogenic (dopa, dopamine, serotonin, adrenalin, noradrenalin, histamine), hormone peptide (angiotensin II, somastosin, TRH). Ligan yang berikatan bukan dari golongan neurotransmitter adalah eikosanoid. Biasanya reseptor jenis ini merupakan reseptor G-potein-coupled yang mempunyai 3 subunit (α, β, γ) dan memiliki 7 kompartemen.
Transduksi sinyal pada reseptor metabotropik G-protein-coupled
Pada keadaan inaktif, subunit α potein G mengikat GDP. Saat diaktivasi oleh reseptor G-protein-coupled, GDP beruba menjadi GTP. Kemudian potein G akan terpecah menjadi Gα (subunit GTP) dan Gβγ yang akan mengaktifkan protein efektor. Secara perlahan subunit Gα akan melepas PO4 dari GTP sehingga berubah menjadi GDP yang menyebabkan aktifitas berhenti.
Taut Neuromuskular pada Otot Rangka
Setiap serabut saraf bermielin yang masuk ke otot rangka membentuk banyak cabang yang jumlahnya tergantung pada ukuran unit motoriknya. Cabang akan berakhir pada otot rangka di tempat yang disebut taut neuromuskular (neuromuscular junction) atau motor-end-plate. Sebagian besar serabut-serabut otot hanya dipersarafi oleh satu motor end-plate. Saat mencapai serabut otot, saraf kehilangan selubung mielin dan pecah menjadi cabang-cabang halus. Masing-masing saraf berakhir sebagai akson yang terbuka dan membentuk unsur neural motor end-plate. Pada motor end-plate, permukaan serabut otot sedikit meninggi serta membentuk unsur otot (sole plate). Elevasi terjadi akibat akumulasi sarkoplasma granular di bawah sarkolema serta banyak inti dan mitokondria.
Akson terbuka yang melebar terletak pada alur permukaan serabut otot yang dibentuk oleh lipatan sarkolema ke dalam (junctional fold = dasar alur dibentuk oleh sarkolema yang membentuk lipatan-lipatan). Junctional fold berfungsi memperluas area permukaan sarkolema yang terletak di dekat akson yang melebar. Di antara membran plasma akson (aksolema atau membran prasinaps) dan membran plasma serabut otot (sarkolema atau membran pascasinaps) terdapat celah sinaps.
Saat potensial aksi mencapai membran prasinaps motor end-plate, kanal voltage-gated Ca2+ terbuka dan Ca2+ masuk ke dalam akson. Hal ini menstimulasi penggabungan vesikel sinaptik dengan membran prasinaps dan menyebabkan pelepasan asetilkolin ke celah sinaps. Kemudian asetilkolin menyebar dan mencapai reseptor Ach tipe nikotinik di membran pascasinaps junctional fold. Setelah pintu kanal terbuka, membran pascasinaps lebih permeabel terhadap Na+ yang mengalir ke dalam sel-sel otot dan terjadi potensial lokal (end-plate potential). Pintu kanal Ach permeabel terhadap K+ yang keluar dari sel namun dalam jumlah yang lebih kecil. Jika end-plate potential cukup besar, kanal voltage-gated untuk Na+ terbuka dan timbul potensial aksi yang menyebar sepanjang permukaan sarkolema. Gelombang depolarisasi diteruskan ke serabut otot oleh sistem tubulus T menuju miofibril yang kontraktil. Hal ini menyebabkan pelepasan Ca2+ dari retikulum sarkoplasma yang akan menimbulkan kontraksi otot.
Disusun oleh Lyriestrata Anisa
REFERENSI
  1. Sherwood L. Fisiologi Manusia dari Sel ke Sistem. Jakarta: EGC; 2001. p.78-100
  2. Snell RS. Neuroanatomi Klinik untuk Mahasiswa Kedokteran. Edisi ke-5. Jakarta: EGC; 2001.p.54-8;106-9
  3. Ibrahim N. Neurophysiology. Bahan Kuliah Modul Neurosains FKUI. 2010
  4. Mudjihartini N. Neurobiologi Molekuler Sel Saraf. Bahan Kuliah Modul Neurosains FKUI. 2010
  5. Staf Pengajar Departemen Farmakologi FK UNSRI. Kumpulan Kuliah Farmakologi. Jakarta: EGC;p.338-9

0 komentar:

Posting Komentar